在數學的浩瀚世界里,有理數是基礎且重要的概念。簡單來說,有理數是整數(正整數、0、負整數)和分數的統稱。它可以精確地表示為兩個整數的比值形式。有理數在日常生活和科學研究中應用廣泛,從日常的購物算賬到復雜的物理計算都離不開它。下面,就讓我們深入探究有理數的詳細內涵,了解它所包含的具體內容。
1、有理數是整數(正整數、0、負整數)和分數的統稱,是整數和分數的集合。
2、整數也可看做是分母為一的分數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不循環的數。是“數與代數”領域中的重要內容之一,在現實生活中有廣泛的應用,是繼續學習實數、代數式、方程、不等式、直角坐標系、函數、統計等數學內容以及相關學科知識的基礎。
3、有理數集可以用大寫黑正體符號Q代表。但Q并不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。
4、“有理數”這一名稱不免叫人費解,有理數并不比別的數更“有道理”。事實上,這似乎是一個翻譯上的失誤。有理數一詞是從西方傳來,在英語中是rationalnumber,而rational通常的意義是“理性的”。中國在近代翻譯西方科學著作,依據日語中的翻譯方法,以訛傳訛,把它譯成了“有理數”。但是,這個詞來源于古希臘,其英文詞根為ratio,就是比率的意思(這里的詞根是英語中的,希臘語意義與之相同)。所以這個詞的意義也很顯豁,就是整數的“比”。與之相對,“無理數”就是不能精確表示為兩個整數之比的數,而并非沒有道理。
5、有理數集與整數集的一個重要區別是,有理數集是稠密的,而整數集是密集的。將有理數依大小順序排定后,任何兩個有理數之間必定還存在其他的有理數,這就是稠密性。整數集沒有這一特性,兩個相鄰的整數之間就沒有其他的整數了。
6、有理數是實數的緊密子集:每個實數都有任意接近的有理數。一個相關的性質是,僅有理數可化為有限連分數。依照它們的序列,有理數具有一個序拓撲。有理數是實數的(稠密)子集,因此它同時具有一個子空間拓撲。
我對加盟感興趣,馬上免費通話或留言!
(24小時內獲得企業的快速回復)
我們立即與您溝通
溫馨提示:
1.此次通話將不會產生任何費用, 請放心使用
7x24小時電話咨詢
130*1234567